

Alias-Free Convnets: Fractional Shift Invariance via Polynomial Activations

Hagay Michaeli Tomer Michaeli

Daniel Soudry

The research of DS was funded by the European Union (ERC, A-B-C-Deep, 101039436)

WED-PM-379

Abstract

Convnets: built-in priors

- Label unaffected by image shift
- → Classifier should be "shift invariant"
- Features should shift with image

 \rightarrow Convnet hidden layers should be "shift equivariant"

Single pixel shifts can change classification

Why do deep convolutional networks generalize so poorly to small image transformations? Azulay & Weiss, JMLR 2019

Is Feature extractor equivariant?

No

Building blocks:

- Convolution layers
- Activation Layers (e.g., ReLU, GeLU)
- Normalization layers

Equivariant? Yes Yes Yes (for some types)

• Pooling layers

What is the problem? Aliasing!

Nyquist Theorem: Perfect reconstruction if sampling rate > 2 x bandwidth

What is the problem? Aliasing!z $\sigma(z)$ $LPF(\sigma(z))$

Original

Discretized

Reconstructed

Alias-Free Generative Adversarial Networks

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo Aila, NeurIPS 2021

Alias Free Convnet (AFC)

[1] A ConvNet for the 2020s

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie, CVPR 2022 Zh

[2] **Making Convolutional Networks Shift-Invariant Again** Zhang, ICML 2019

Why this works? A look in the frequency domain

Alias-Free Generative Adversarial Networks

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo Aila, NeurIPS 2021

What's the problem without polynomials?

Alias-Free Generative Adversarial Networks

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo Aila, NeurIPS 2021

Results (1): Perfect Equivariance

• Representations change after ½ pixel shift:

[1] **Truly shift-equivariant convolutional neural networks with adaptive polyphase upsampling** Anadi Chaman, Ivan Dokmanić

Results (2): Perfect Invariance

Results (3): Certified adversarial accuracy

Model (ImageNet)	Test Accuracy	Integer grid	Half-pixel grid	Fractional grid
ConvNeXt-Baseline	82.12	76.63	73.65	77.82
ConvNeXt-APS	82.11	82.11	79.68	76.31
ConvNeXT-AFC (ours)	81.04	81.04	81.04	81.04

 $T_{\text{integer}} = \{(i, j) \mid 1 \le i, j \le 31\}$

$$T_{\text{half}} = \left\{ \begin{pmatrix} \frac{i}{2}, \frac{j}{2} \end{pmatrix} \mid 1 \le i, j \le 63 \right\}$$
$$T_{\text{frac}} = \left\{ \begin{pmatrix} \frac{m_1}{n_1}, \frac{m_2}{n_2} \end{pmatrix} \mid 1 \le m_{1,2} \le n_{1,2} \le 12 \right\}$$

Results (4): Improved robustness to "camera translations"

Summary: "Alias free convnets"

- Perfect invariance and equivariance to fractional shifts
- SOTA accuracy with adversarial fractional shifts
- First polynomial network with near-SOTA on ImageNet

Thank you!